

Microscale yielding of fiber gels

Jie Song¹, M. Caggioni², T. Squires³, P. Spicer¹, and S. Prescott¹ UNSW Australia,¹ P&G,² and UCSB³

Yield stress fluids When exerted stress $\dot{\gamma}=0,\;\sigma<\sigma_{y}\;$ does not exceed the yield stress, no flow or motion occurs $\sigma = \sigma_y + K \dot{\gamma}^n \ , \ \sigma > \sigma_y$ Herschel-Bulkley egn. Above the yield stress, flow resembles a powerlaw or even Newtonian fluid

Especially attractive is the ability to impart a useful yield stress without a significant viscosity increase.

Low viscosity but solid-like suspension from yield stress

Conclusion

- Fibers form gels at low volume fractions in water with a unique combination of useful yield stress and low viscosity.
- Microrheology accesses performance and structural properties that are missed by bulk techniques
- Fiber structures can disperse stress more efficiently than glassy jammed structures by restructuring.
- Responsiveness of network via local restructuring aids in enhancing suspension ability and robustness during deformation but results in widespread heterogeneity.