DUROMER

Microstructure - Rheology Relationship Study of Mineral Reinforced Nylon 6

Jasmine Pour

Polymer Engineer, MSc.

Introduction

- NYLON-6 is widely used in engineering fields
 - Easy process ability
 - good Thermal Stability
 - Semi Crystaline Plastic; good mechanical characteristics.
 - low heat distortion temperature
 - High water absorption

Wollastonite

- High Purity,
- high brightness,
- acicularity,
- low oil and moisture absorption,
- Availability-cost
- Wollastonite Reinforced Nylon
 - Balance of physical properties and processability
 - Improve Mechanical strength and stiffness
 - Increase Heat Distortion Temperature
 - Nice surface finish and reflectivity
 - Reduce Warpage and better dimensional stability
 - Natural smoke and fire suppressant

Wollastonite

- It is the only naturally occurring, nonmetallic, white, needle-like mineral
- Aspect Ratio range of 8-20.
 - Lower aspect ratio compare to GF but it's thinner and has higher surface area
- Advantage: chemical purity, thermal stability, low water absorptivity, white colour, and small health hazard
- Disadvantages: its relatively high price and high hardness in comparison to other particulate fillers that may damage the processing equipment
- It is widely used with Polyamide 6 & 66, Polypropylene (PP), Polycorbonate (PC), Polyurethane (PU), PEEK, Polystyrene (PS), Thermoplastic elastomers (TPE) etc.

Calcium Meta Silicate - CaSiO3 specific gravity of 2.9, Mohs hardness of 4.5 Refractive index between 1.63 and 1.67.

Compounding

- Nylon-6/Wollastonite composites were prepared by corotating twin screw extruder
- challenges
 - Mix Filler and matrix uniformly
 - Broke filler agglomerate
 - Minimum Filler breakage
 - Controlled by screw profile

Different Zones

Engineering Screw Configuration

- Compromise between mixing level and Wollastonite retained Aspect ratio
- Use Shear and Elongation fields
- Control shear Stress
 - Adjust pitch of kneading blocks
 - Reverse elements to build to pressure
 - Screw Speed
 - Control shear rate
 - Pressure build up in die
 - Pseduplastic behaviour

Screw Design Software

Starve feeding

Control the percentage of material in high shear zones;

Microscopic Image

Wollastonite Before Compounding

Wollastonite After Mild Compounding

Wollastonite After Strong Compounding

250X

Theoretical Aspects

The mechanical properties of a reinforced thermoplastic are controlled by

- Filler and matrix individual properties
- Filler Volume fraction
- Filler orientation
- Filler- Matrix interface strength
- Filler <u>Aspect Ratio</u>

$E_{Composite}$ =k $\eta_l \eta_o V_{filler} E_{filler}$ + $V_{matrix} E_{matrix}$

 E_c = Young's modulus of the composite

 E_f = Young's modulus of the fibre

 E_m = Young's modulus of the matrix

 V_f = fibre volume fraction

 V_m = matrix volume fraction (1- V_f - V_v)

 $V_v = void volume fraction$

κ = fibre area and Diameter correction factor

 η_1 = fibre length distribution factor

 $\eta_o = fibre orientation distribution factor$

Fig. 1

Isotropic modulus vs. fiber aspect ratios and various fiber weight percentage. Note that the figure shows *fiber weight percent* in the compound to be an important factor in achieving higher modulus.

Aspect Ratio

 The optimum performance of a fibrelike reinforming filler cannot be achieved below aspect ratio of 100:1

Microstructure

- In most synthetic materials, the spatial orientation of the discontinuous Filler is between a truly random 3D arrangement and a random 2D arrangement
- The Melt flow breaks the 3D network and align needle like Wollastonite;
 - Filler orientation
 - affect the final crystallization and melt behaviour
- Studies show that rheology can be used as a powerful tool for studying composite microstructure

Induced crystallization

- Enhanced nucleation caused by flow
- Orientation o f polymer
- Wollastonite act as a start point for crystalization
- High aspect ratio fillers in a shear field can intensify adjacent polymer chains alignment and increase crystalization
- Alongational flow

Change in Crystallinity

- Higher Tc, nucleating effect
- Higher crystalinity % (22 compared to 18%)
- Higher melting point : Thicker Lamelaes

Rheological properties of the Composite

- Adding Fillers increased shear viscousity
- The effect of Wollastonite is more than glass
 Fibre (larger surface area)
- More shear thinning behaviour
- Elongation resistance will increase
- More elastic behaviour
- Fibre orientation control flow rate

Dynamic Melt Behaviour

- Rheological behaviour of polymer melt reinforced by Microfibrous mineral fillers is quite different from Glass/aramid fibre filled composites.
- At low shear: GF composites act as Newtonian fluid. Wollastonite filled composites show yield.
- yield stress is inversely proportional to particle diameter

Shear Rate dependency

Storage Modulus

Mechanical Properties

Sample	Flex Modulus, Mpa	Tensile Strength, MPa	Calculated L/d	Microstructure
30% Wollastonite, Mild Mixing	7500	100	17	3D network, Filler orientation, Induced Crystalinity
25% Wollastonite, Strong Mixing	4000	70	5.5	Random dispersion, no solid like behaviour
Matrix (Nylon 6)	2200	75	NA	Semicrystaline

HDT

	Matrix	15%	25%
Normal Mixing	164	179	185
Mild Screw Profile	164	185	190

- Increased Stiffness of the Composite
- Higher Crystallinity

conclusion

- Composite stiffness and strength is directly proportional to the Filler survived length after mixing
- To achieve desired Mechanical Properties, a certain microstructure is needed and it can achieve by controling elongational and shear fields in the extruder.
- Rheology is a strong tool to study Microstructure and so the final properties of a composite

Thank you For your Attention

Jasmine Pour Jasmine.m.pour@gmail.com

Lot 109 Progress Circuit, Prestons NSW 2170 Australia P: +612 9426 7300 F: +612 94267399

