Autodesk Society of Rheology Meeting: May 2013 Challenges in the Simulation of Injection Molding

Dr. Franco Costa

Senior Research Leader – Autodesk Simulation (Moldflow)

Content

Autodesk Simulation Overview

- Product Overview
- Material Characterization

Some Recent Advances

- Long Fiber Breakage
- Crystalline Morphology
- Stress Relaxation

Some Tough Problems

- Micromolding
- Flow imbalances + Ear-flow
- Jetting Flows
- Tiger Stripes

Autodesk Simulation Investments

Structural / Code Checking

Mobile

FEA

Test and Validation

Manufacturing

Cloud

Embedded

Desktop

Injection Molding

- Unlike other processes, may not be able to overcome problems with change of process conditions
- Simulation adds high value

Plastic Flow Simulation

Simulate the flow of melted plastic to help optimize part and mold designs, reduce potential part defects, and improve the molding process

Features

- Filling and Packing Analysis
- Molding Window Analysis
- Design of Experiments
- Insert Overmolding
- Two-Shot Sequential Overmolding
- Compression and Injection-Compression Molding

AUTODESK.

Mold Heating & Cooling Simulation

Improve cooling system efficiency, minimize part warpage, achieve smooth surfaces, and reduce cycle times

Features

- Cooling Component Modeling
- Cooling System Analysis
- Rapid Heat Cycle Molding

Shrinkage and Warpage Simulation

Predict and control postmolding shrinkage and warpage and evaluate the structural integrity of the molded part

Features

- Shrinkage Analysis
- Warpage Analysis
- Core Shift Control
- Fiber Orientation

Content

Autodesk Simulation Overview

- Product Overview
- Material Characterization

Some Recent Advances

- Long Fiber Breakage
- Crystalline Morphology
- Stress Relaxation

Some Tough Problems

- Micromolding
- Flow imbalances + Ear-flow
- Jetting Flows
- Tiger Stripes

Viscosity in Injection Molding

- Injection pressures range from 0-200MPa
- Shear rates range from 1-100,000/s
- Temperatures range from melt (300C) to mold (40C)
- The phase change from melt to solid must be identified for residual stress calculations

Rheological model - Modified Cross-WLF model

- Cross model captures the shear rate sensitivity of most material families
- WLF equation captures Arrhenius and hyperbolic temperature sensitivities depending on the magnitude of T-T*

where:

- T* = D2 + D3P
- η is Viscosity (Pa. sec.)
- $ec{\gamma}$ is Shear Rate (1/sec.)
- T is Temperature (deg.K)
- P is pressure (Pa)
- Unknowns: D1, D2, D3, A1, A2, Tau*, n

Rheometer - Design

- Many materials are sensitive to the melt preparation conditions
- An inline rheometer prepares the melt under the same conditions used in injection molding (strong thermomechanical history, short residence time)

Rheometry – Pressure dependence

Compressibility - PVT

Compressibility

- High pressures involved
 - 0-200 MPa.
- Materials are compressible

Testing Resources

- Injection Molding Machines
- Preparation
- Viscosity
- Thermal
- Pressure-Volume-Temperature
- Mechanical
- Shrinkage
- Viscoelasticity

1			
1			
for -		and and a	de tradet
-	-	-	
Company and	Martin California		414

Injection Molding Machines

Melbourne, Australia

Arburg 35 ton

Arburg 160 ton

Battenfeld 150 ton

Ithaca, NY, USA

Arburg 35 ton

2 * Krauss Maffei 160 ton

Content

Autodesk Simulation Overview

- Product Overview
- Material Characterization

Some Recent Advances

- Long Fiber Breakage
- Crystalline Morphology
- Stress Relaxation

Some Tough Problems

- Micromolding
- Flow imbalances + Ear-flow
- Jetting Flows
- Tiger Stripes

Fiber Breakage Model

- Phelps-Tucker Model
 - Probability of breakage of fibers length l_i

 ς : Dimensionless Drag Coefficient (Dg)

Fiber Breakage Model

Probability of creating a fiber of length I_k from a fiber of length I_i

$$R_{ik} = G_{norm}\left(l_i, \frac{l_k}{2}, Sl_k\right)$$

S: Distribution Parameter

 $\overline{N}_{i,t}$:

Number of fibers of length l_i which exist at time t

$$\overline{N}_{i,t+\Delta t} = \overline{N}_{i,t} - \overline{P}_i \overline{N}_{i,t} \Delta t + \sum_{k|k\geq i}^{M} \overline{R}_{ik} \overline{N}_{k,t} \Delta t$$
$$i = 1, 2, ..., M;$$

Fiber Length Distribution in 3D Some long fibers pushed to the end?

Fiber Length Distribution Measurement & Calculation – Ticona Moldings

Long Fiber Breakage Model **Fiber Length Evolution**

Shear Layer

142

AUTODESK.

Predicted Fiber Length Distributions

Content

Autodesk Simulation Overview

- Product Overview
- Material Characterization

Some Recent Advances

- Long Fiber Breakage
- Crystalline Morphology
- Stress Relaxation

Some Tough Problems

- Micromolding
- Flow imbalances + Ear-flow
- Jetting Flows
- Tiger Stripes

Why Crystallization?

- Solidification
 - Single transition temperature?

PP, 20% talc filled Sumitomo, Noblen BZE62F5B

Cooling Rate Effect on Solidification

Measured Specific Volume during cooling

Fig. 9. Influence of cooling rate an the specific volume of i-PP at a pressure of 40 MPa. Average cooling rates during crystallization are given in the figure

van der Beek et. al. Inter. Polymer Processing, 20, 111-120, (2005).

Shear Rate Effect on Solidification

Measured Specific Volume during cooling after shearing

Fig. 10. Influence of shear flow an the normalized specific volume of *i*-PP. Shear is applied as a step function at 139 °C, with a shear rate of 38.5 l/s to a total shear of 117. Specific volume with (\triangle) and without shear flow (\bigcirc) is obtained at an average cooling rate during crystallization of 1.4 °C/s and a pressure of 40 MPa

Image: IME Technologies

van der Beek et. al. Inter. Polymer Processing, 20, 111-120, (2005).

Model of crystallization kinetics

🕂 AUTODESK.

Crystallization Effect on Flow

Calculate relative crystallinity (α) due to flow induced nucleation and temperature:

Viscosity

$$\eta(\dot{\gamma},\alpha) = \eta_{a} \left(1 + \frac{(\alpha/A)^{\beta_{1}}}{(1 - \alpha/A)^{\beta}} \right), \alpha < A$$
Specific Heat
$$c_{p}(\alpha,T) = \alpha c_{p_{s}}(T) + (1 - \alpha) c_{p_{a}}(T)$$
Thermal Conductivity
$$k(T) = \alpha k_{s}(T) + (1 - \alpha) k_{a}(T)$$

Density
$$v = \alpha v_s(p,T) + (1-\alpha)v_a(p,T)$$

Temperature

$$\rho(\alpha) c_p(\alpha) \frac{DT}{Dt} = k(\alpha) \nabla^2 T + \mathbf{\sigma} : \mathbf{D} + \rho_c H_c \chi_{\infty} \frac{\partial \alpha}{\partial t} - \frac{T}{\rho(\alpha)} \frac{\partial \rho(\alpha)}{\partial T} \frac{Dp}{Dt}$$

Predicted Modulus, E₁₁ & E₂₂

Varies through thicknessResolved in flow direction

2600.0

-1.000

-0.7500

-0.5000

-0.2500

0.0000

Normalized thickness

0.2500

0.5000

0.7500

1.000

🕂 AUTODESK.

1.250

Content

Autodesk Simulation Overview

- Product Overview
- Material Characterization

Some Recent Advances

- Long Fiber Breakage
- Crystalline Morphology
- Stress Relaxation

Some Tough Problems

- Micromolding
- Flow imbalances + Ear-flow
- Jetting Flows
- Tiger Stripes

Viscoelastic Warpage

Stresses arise from mechanical and thermal strains according to the a viscoelastic stiffness tensor

The stiffness tensor changes according to time and temperature $F(t) = \sum_{k=1}^{N} g_k \exp\left(-\frac{t}{\lambda_k}\right)$

Viscoelastic Warpage for MP and DD

- Implemented in Midplane and Dual-Domain in Scandium Technology Preview
- Requires viscoelastic material data to be measured
- Viscoelastic simulation gives more realistic process sensitivity to packing pressure and packing/cooling time variation
- Validate using Shrinkage molding data

AUTODESK

Viscoelastic Warpage on Tagdie Moldings

Examine trend with respect to Packing Pressure variation

Uncorrected (no CRIMS) shrinkage in the flow direction for an Amorphous non-fiber material. (HIPS) Perpendicular Shrinkage shows a similar trend.

Content

Autodesk Simulation Overview

- Product Overview
- Material Characterization

Some Recent Advances

- Long Fiber Breakage
- Crystalline Morphology
- Stress Relaxation

Some Tough Problems

- Micromolding
- Flow imbalances + Ear-flow
- Jetting Flows
- Tiger Stripes

Micro Moulding Validation Challenges

- Conventional sensors are large in comparison to the part
- High speed of the moulding process
- Non-conventional injection moulding machines & mechanisms
- Emergence of additional physical phenomena
 - ⇒ Scale effects emerging at micro scale
 - Wall-slip ?
 - Changed heat transfer coefficient between polymer and mould
 - Surface tension ?

Content

Autodesk Simulation Overview

- Product Overview
- Material Characterization

Some Recent Advances

- Long Fiber Breakage
- Crystalline Morphology
- Stress Relaxation

Some Tough Problems

- Micromolding
- Flow imbalances + Ear-flow
- Jetting Flows
- Tiger Stripes

Runner imbalance: Test mold

Often observe imbalance in symmetric part
Due to shear heating - convection pattern

Runner imbalance: Fast injection

Often observe imbalance in symmetric part
Due to shear heating - convection pattern

Runner imbalance: Short shot weights

- Shear imbalance depends on injection rate
- Slower injection rates results in opposite imbalance due to cooling effect

Runner imbalance: Slow injection

Slow injection rate

Edge flow in PC lens: Fill pattern

 Initial analysis does not agree with molding short shot

AUTODESK.

Edge flow in PC lens: Fill pattern (2)

Refined gate at mesh gives better agreement

Edge flow in PC lens: Temperature slice

Temperature distribution in the runner and gate

Ear-flow in fiber filled materials

- Akay & Barkley*
 - Increasing the fiber content caused advanced flow at the edge
 - Maranyl A690 (PA)
 - Possibly due to fiber alignment and effect on viscosity

*Plastics, Rubber and Composites Processing and Applications Vol 20 (3), 1993. pp137-149

Content

Autodesk Simulation Overview

- Product Overview
- Material Characterization

Some Recent Advances

- Long Fiber Breakage
- Crystalline Morphology
- Stress Relaxation

Some Tough Problems

- Micromolding
- Flow imbalances + Ear-flow
- Jetting Flows
- Tiger Stripes

Wall-Slip for 3D Flow

Content

Autodesk Simulation Overview

- Product Overview
- Material Characterization

Some Recent Advances

- Long Fiber Breakage
- Crystalline Morphology
- Stress Relaxation

Some Tough Problems

- Micromolding
- Flow imbalances + Ear-flow
- Jetting Flows
- Tiger Stripes

Caused by a viscoelastic flow instability?

AUTODESK.