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Outline:

What is ferrofluid?

What is magneto-convection?
Potential applications.

Problem definition and approach.
Stability and energy analyses.
Physical mechanisms discovered.

Open questions of rheology.




Natural magneto-polarisable fluids:

Fluid

Magnetic susceptibility

Diamagnetic protein solutions (Lysozime)

Paramagnetic melts or solutions (MnCl,)

Y ~ —107°
x ~ 1074 —-1073

Ferro-magnetic fluid (ferro-colloid):

Base: kerosene or mineral oil;

Solid magnetic phase: single domain mag-
netite, iron or cobalt particles (size ~10
nm, concentration ~ 10%);

Surfactant: mono-layer of oleic acid.




Nature of magnetic ponderomotive (Kelvin)

force

Electrostatic analogy: Magnetic force:

F=MVH,

M—magnetisation,
H—magnetic field

electrically Stronger magnetised particles

: W oL g : .
(magneticaly) WoSiel . are forced to regions with a
polarizable i

media stronger magnetic field.




Two types of convection

Gravitational convection:

e Local heating leads to fluid expansion

Ap = —BAT;

e Less dense fluid rises due to buoyancy.

Magnetoconvection:

e Local heating leads to partial de-
magnetisation AM = —KAT;

e Stronger magnetised fluid is driven to
regions with stronger magnetic field.




Applications:

Targeted drug delivery in cancer
treatment

Magnetic sealing of joints and
gaps

Cooling of high-power loud-

speakers

Heat exchangers in low gravity

conditions (spacecrafts)

Convection control in protein

crystal growth

Geometry sketch:




Non-dimensional governing equations:
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Basic flow solutions:

0.5

Typical parameter ranges:
Gr~0-8, Gr,, ~0—15, Pr~130, x~5, xs«~Dd

e Uniform external magnetic field results in a nonuniform field inside the layer;

e Stronger magnetised fluid is in a weak magnetic field region.




Experimental equipment:




Experimental convection chamber:

b

. Ferrofluid layer

. Copper heat exchanger

. Plexiglas heat exchanger

. Plexiglas frame

. Thermo-sensitive liquid crystal sheet

. Thermocouples




Experimentally observed instability in uniform

transverse magnetic field:




Schematic fluid motion:

Basic buoyancy-induced flow: Flow in magnetic field:




Linearised perturbation equations (normal mode form):
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where D = d/dz and H = (D¢, iad).



Computational stability results:

4

: Thermo-gravitational +
Thermo-magnetic waves

- Thermo-magnetic
stationary rolls

2D Stahility
- -=- Thermo-magnetic waves

e Full 3D map is obtained using inverse Squire’s transformation
(Suslov, Phys. Fluids, 2008).

How does this compare with experiment?




Experimental stability map:
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e Suslov et al, Phys. Rev. E, 2012.

2 3 2Mn2 32
Need to convert H and AT to Gr = p*ﬁ’;??gd and Gr,, = P*gg{f@)d .




Two experimental scenarios

(@) (b)

H2< H1

Gr

m

e Viscosity is not constant and is not known.
e Accurate determination of Gr and Gr,, is currently impossible.

Practical design problems!




Disturbance energy balance equation:

JREk = Dy + 2m1 + 2me + Xar + 2uis ;
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Disturbance energy integrals for selected

marginal stability points:
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Magnetic field

Ponderomotive
m 2 distortion

m1 forcing
Buoyancy
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Thermo-gravitational waves (point 1):

t=T/4 t=T/ 2 t=3T/4




Thermo-magnetic waves (point 4):

t=T/4 t=T/ 2

t=3T/4

351




Summary:

The instability in a vertical ferro-fluid layer is caused by two physical

mechanisms: thermo-gravitational (buoyancy) and thermo-magnetic.

Three instability patterns are found: counter-propagating thermal waves
(large G, small Gr,,), (new) counter-propagating thermo-magnetic waves
(large G, intermediate Gr) and stationary magneto-convection rolls

(intermediate to large Gr,,, small Gr).

The propagating thermal or thermo-magnetic instability waves form
horizontal or inclined convection rolls; stationary magneto-convection rolls

remain vertical.

Knowledge of rheological properties of ferrofluids is crucial for practical

design of applications.




Surprise, surprise:




