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P ti l Mi t
Industries

Particle Mixtures • Water/Wastewater
• Algae for Biofuels
• Desalination
• Minerals Processing
• Ceramics
• Pulp and Paper
• Blood 
and many more

Theory & Methods
Shear Rheology

Processes
• Flow • Shear Rheology

• Compressional Rheology

• Flow
Pumping and Mixing

• Dewatering • Compressional Rheology Dewatering
Thickeners, Filters, Centrifuges



Material PropertiesMaterial Properties

 Gel Point, gg
 Minimum solids volume fraction 

at which the suspension forms a 
continuously networked structure 
th t t it it i ht t ththat transmits its weight to the 
suspension below.

 Can make an approximate 
measure from a batch settling 
experimentexperiment.



Material PropertiesMaterial Properties

 Compressive Yield Stress, Py()y
 Minimum compressive force 

required for a suspension to 
yield and compress.

 Shear Yield Stress, y()
 Minimum shear force required 

for a suspension to yield and 
flflow.



Material PropertiesMaterial Properties



Yi ld St M tYield Stress Measurement

 Vane technique
 Developed by Nguyen and Boger

0.2 rpm

p y g y g
1983

 measurement of shear yield 
stress via Haake Rheometer

slurry
vane

slurry

 Nguyen QD, Boger DV, Journal of Rheology, 29 (1985) 335-347 
 Pashias N, Boger DV, Summers J, Glenister DJ, Journal of 

Rheology, 40 (1996) 1179-1189



Poly-disperse mixturesy p

• Bi-disperse mixtures
• Poly-disperse mixturesParticle Size DistributionParticle Size Distribution

• Measurements
• Equilibrium Batch Settling
• Yield stress measurement
• Shear rheology measurements

Determination of bi-
disperse mixture
Determination of bi-
disperse mixture Shear rheology measurements

• Model development
disperse mixture 
properties
disperse mixture 
properties

• What is the minimum required 
information?

Development of an 
industrial tool for 

di ti f ti

Development of an 
industrial tool for 

di ti f tiprediction of propertiesprediction of properties



Materials - Solids

 Alumina
 AKP-50 (4000 kg m-3, d50 0.14 m, IEP 9.2)

 Calcium Carbonate
 Omyacarb-2 (2700 kg m-3, d50 3.5 m, IEP 8)y ( g , 50  , )
 Omyacarb-40 (2700 kg m-3, d50 32.5 m, IEP 8)

 Sand
 AKP-50 (2600 kg m-3 d50 1083 m) AKP 50 (2600 kg m , d50 1083 m)

Materials - Electrolyte
 Potassium Nitrate Solution

 0.01 M KNO3 (aq) at pH 9.2

Materials Electrolyte



Gel Point (Bi-disperse mixtures)

 Measured
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Yield Stress Constitutive Equation

 Yield stress data is fitted to a 

q
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constitutive equation:
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cp is the close packing fraction
a b and k are empirical fitting parameters
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 Gel point and close packing fraction 
predicted as described.

a, b and k are empirical fitting parameters
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 b is assumed 0.002, while a and k
parameter variation is determined as a 
function of sand fraction
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Yield Stress Constitutive Equation5
6

 Yield stress data is fitted to a 

q

a  u1S  u23
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cp is the close  packing fraction
a b and k are empirical fitting parameters
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 Gel point and close packing fraction 
predicted as described.

a, b and k are empirical fitting parameters
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Herschel Bulkley model

Sh t h
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 Shear stress versus shear 

rate data also determined 
using the vane

Pure AKP-50
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Sedimentation and Segregationg g

Particles settle due to gravity, even when 
the solids concentration is greater that the

10000
the solids concentration is greater that the 
gel point.
Larger particles can settle faster.
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 Stokes Law
 For isolated particles.
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where Vcoarse = the velocity of coarse particle
dcoarse = the diameter of coarse particle
∆ th d it diff b t ti l d fi ti l i

,fine suspension fine fine fine medium

∆ρ = the density difference between coarse particle and fine particle suspension 
g = the acceleration due to gravity
η = the viscosity of fine particle suspension at a given shear rate



ConclusionsConclusions

 Rheology of bi-disperse mixtures can be predicted:
 g and cp variations can be predicted for bi-disperse mixtures

 based on pure component properties based on pure component properties, 
 requires significant particle size difference.

 y and Py variations can be predicted
 uses a constitutive equation.

  versus variations can be predicted
 using Herschel Bulkley parameters that vary with mixture 

 

composition.
 Sedimentation and segregation can compromise measurements

 Timescale of segregation must be longer than that of measurement.



Further WorkFurther Work

 Polydisperse mixtures:
 g and cp can be accurately predicted for mixtures of 3 or more 

components provided that particle size differences arecomponents, provided that particle size differences are 
significant.  

 The challenge is to quantify the impact of particle size distribution 
overlapoverlap.

 Dewatering:
 Compressive yield stress, Py() variations can be similarly be y

predicted for mixtures.
 Settling rate predictions…
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