Yielding of Coarse-Fine Particle Mixtures in Mineral Slurries

Shane P. Usher

Particulate Fluids Processing Centre Dept. Chemical & Biomolecular Engineering The University of Melbourne, Australia

* spusher@unimelb.edu.au

Particle Mixtures

Industries

- Water/Wastewater
- Algae for Biofuels
- Desalination
- Minerals Processing
- Ceramics
- Pulp and Paper
- Blood

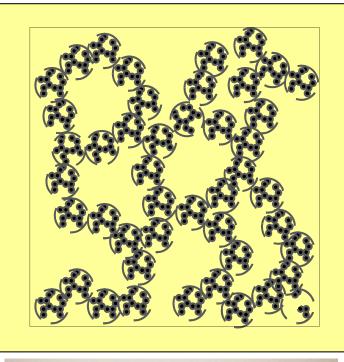
and many more

Processes

• Flow

Pumping and Mixing

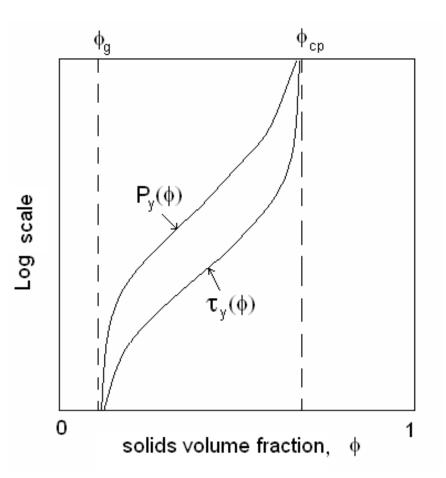
• Dewatering

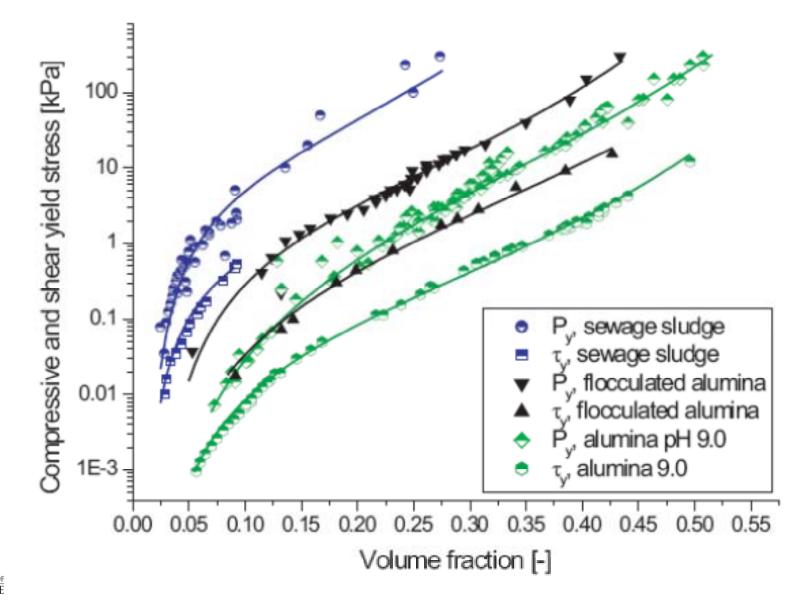

Thickeners, Filters, Centrifuges

- Theory & Methods
- Shear Rheology
- Compressional Rheology

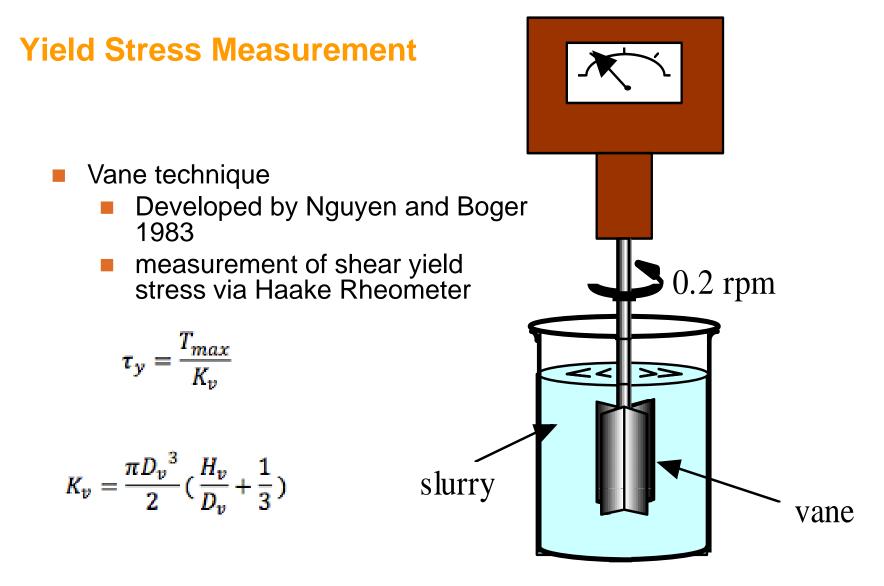
Material Properties

- Gel Point, ϕ_g
 - Minimum solids volume fraction at which the suspension forms a continuously networked structure that transmits its weight to the suspension below.
 - Can make an approximate measure from a batch settling experiment.




Material Properties

- Compressive Yield Stress, $P_y(\phi)$
 - Minimum compressive force required for a suspension to yield and compress.
- Shear Yield Stress, $\tau_y(\phi)$
 - Minimum shear force required for a suspension to yield and flow.



Material Properties

THE UNIVERSITY OF MELBOURNE

- Nguyen QD, Boger DV, Journal of Rheology, 29 (1985) 335-347
- Pashias N, Boger DV, Summers J, Glenister DJ, Journal of Rheology, 40 (1996) 1179-1189

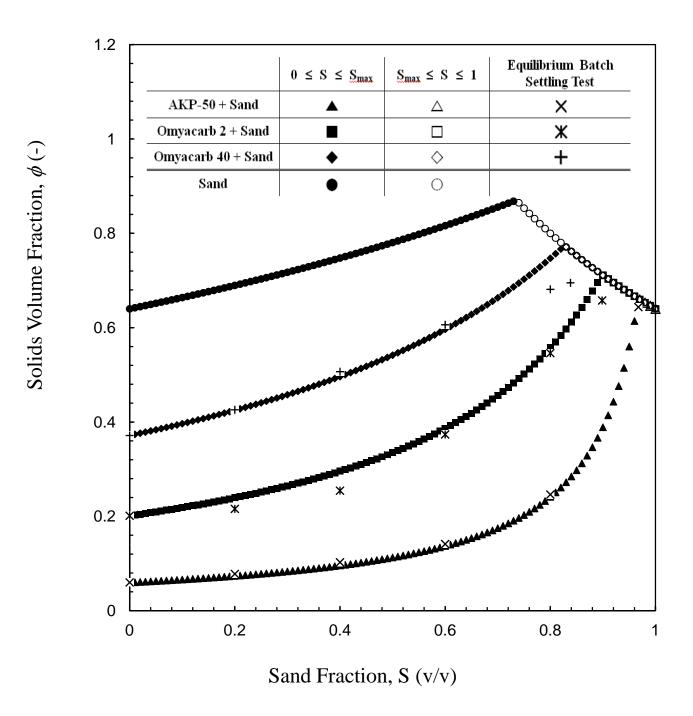
Poly-disperse mixtures

Particle Size Distribution	 Bi-disperse mixtures Poly-disperse mixtures 	
Determination of bi- disperse mixture properties	 Measurements Equilibrium Batch Settling Yield stress measurement Shear rheology measurements Model development 	
Development of an industrial tool for prediction of properties	 What is the minimum required information? 	

Materials - Solids

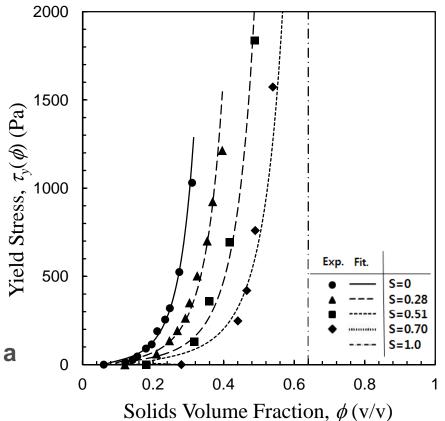
- Alumina
 - AKP-50 (4000 kg m⁻³, d₅₀ 0.14 μm, IEP 9.2)
- Calcium Carbonate
 - Omyacarb-2 (2700 kg m⁻³, d₅₀ 3.5 μm, IEP 8)
 - Omyacarb-40 (2700 kg m⁻³, d₅₀ 32.5 μm, IEP 8)
- Sand
 - AKP-50 (2600 kg m⁻³, d₅₀ 1083 μm)

Materials - Electrolyte

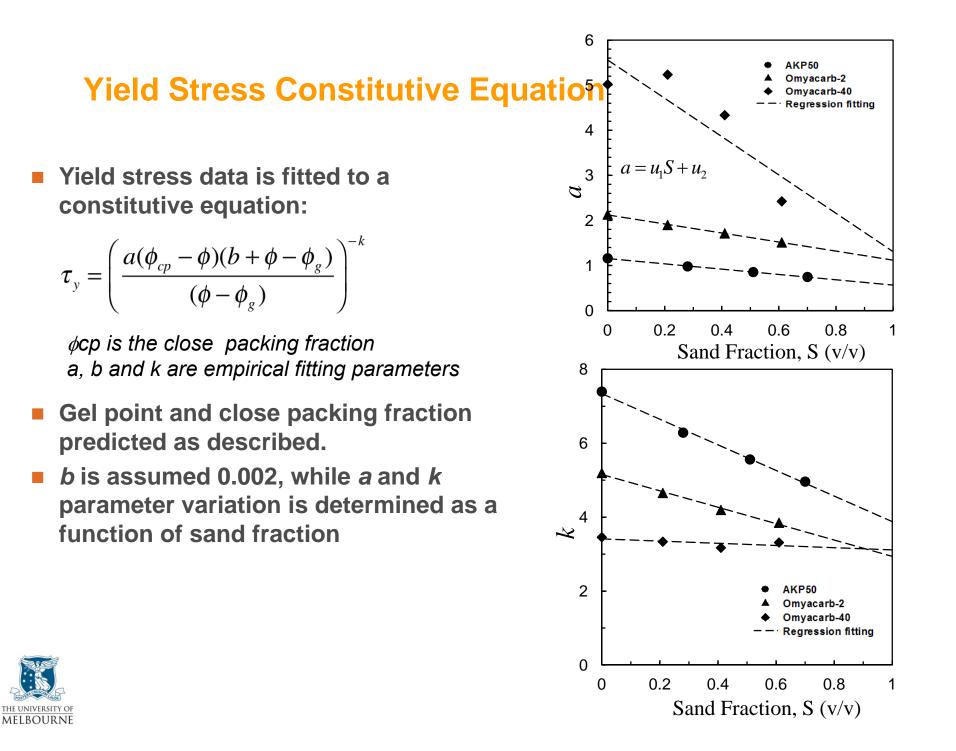

- Potassium Nitrate Solution
 - 0.01 M KNO₃ (aq) at pH 9.2

Gel Point (Bi-disperse mixtures)

1.2 Measured Equilibrium Batch $0 \le S \le S_{max}$ $S_{max} \le S \le 1$ Settling Test Vane technique AKP-50 + Sand \triangle х ж Omyacarb 2 + Sand Solids Volume Fraction, $\phi(-)$ + Omyacarb 40 + Sand \diamond Ο Sand **Predicted** 0.8 Mixture solids volume fraction $\phi_{(mixture)} = \phi = \phi_{(fine)} + \phi_{(coarse)}$ 0.6 Coarse fraction $S = \frac{\phi_{(coarse)}}{\phi_{(mixture)}} = \frac{\phi_{(coarse)}}{\phi_{(fine)} + \phi_{(coarse)}}$ 0.4 0.2 Predictions $\phi_{g_{(mixture)}} = \frac{\phi_{g_{(fine)}}}{1 - S + S\phi_{g(fine)}}, \quad 0 \le S \le S_{(max)}$ 0 0.2 0.4 0.6 0.8 1 0 Sand Fraction, S (v/v) $\phi_{g(mixture)} = \frac{\phi_{cp(coarse)}}{S}, \quad S_{(max)} \le S \le 1 \qquad \phi_g = \phi_{cp} = 0.64 \text{ for coarse sand}$

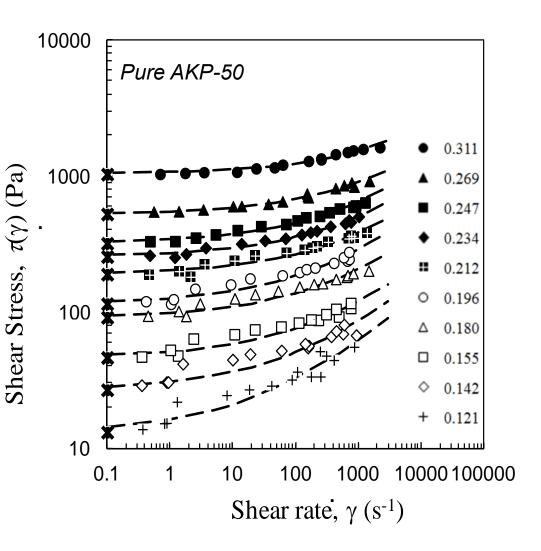

Yield Stress Constitutive Equation

Yield stress data is fitted to a constitutive equation:


$$\tau_{y} = \left(\frac{a(\phi_{cp} - \phi)(b + \phi - \phi_{g})}{(\phi - \phi_{g})}\right)^{-k}$$

 ϕ cp is the close packing fraction a, b and k are empirical fitting parameters

- Gel point and close packing fraction predicted as described.
- b is assumed 0.002, while a and k parameter variation is determined as a function of sand fraction



Herschel Bulkley model

- Shear stress versus shear rate data also determined using the vane
- Data is fitted to Herschel Bulkley equation

 $\tau = \tau_y + k \dot{\gamma}^m$

- Yield stress determined using prediction method
- k and m fitted to data
 - Again, can determine variation of parameters with coarse fraction.

Sedimentation and Segregation

Particles settle due to gravity, even when the solids concentration is greater that the gel point.

Larger particles can settle faster.

- Stokes Law
 - For isolated particles.
 - Gives maximum potential rate of segregation

$$V_{coarse} = \frac{d_{coarse}^2 \cdot \Delta \rho \cdot g}{18\eta}$$

$$\Delta \rho_{\text{fine,suspension}} = \phi_{\text{fine}} \rho_{\text{fine}} + (1 - \phi_{\text{fine}}) \rho_{\text{medium}}$$

where V_{coarse} = the velocity of coarse particle d_{coarse} = the diameter of coarse particle $\Delta \rho$ = the density difference between coarse particle and fine particle suspension g = the acceleration due to gravity η = the viscosity of fine particle suspension at a given shear rate

10000

Conclusions

Rheology of bi-disperse mixtures can be predicted:

- ϕ_g and ϕ_{cp} variations can be predicted for bi-disperse mixtures
 - based on pure component properties,
 - requires significant particle size difference.
- τ_v and P_v variations can be predicted
 - uses a constitutive equation.
- τ versus $\dot{\gamma}$ variations can be predicted
 - using Herschel Bulkley parameters that vary with mixture composition.
- Sedimentation and segregation can compromise measurements
 - Timescale of segregation must be longer than that of measurement.

Further Work

- Polydisperse mixtures:
 - ϕ_g and ϕ_{cp} can be accurately predicted for mixtures of 3 or more components, provided that particle size differences are significant.
 - The challenge is to quantify the impact of particle size distribution overlap.
- Dewatering:
 - Compressive yield stress, $P_y(\phi)$ variations can be similarly be predicted for mixtures.
 - Settling rate predictions...

Acknowledgements

- PFPC (Particulate Fluids Processing Centre), a Special Research Centre of the Australian Research Council (ARC).
- Rio Tinto Mark Coghill and Nikk Vagias
- Seoul National University Sanghyuk Lim
- Melbourne University Peter Scales, Ashish Kumar, Nicky Duan, Cecilia Aurellia, Xiaodun Sun

