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Outline!

•  Rheological fingerprinting of a complex fluid 

•  Large Amplitude Oscillatory Shear (LAOS) 
  Useful ways to characterize nonlinear  

properties of complex fluids 
  How to quantify the measured response? 

•  Wormlike Micellar Solutions 
  Commonly used in shampoos/conditioners 
  Single mode linear viscoelastic response? 
  How do we characterize the nonlinear response? 

•  The nonlinear rheology of snail slime 
  What is a mucin gel? How does it work? 
  How do we characterize the nonlinear response? 

•  Gluten Gels as prototypical dough  
•  LAOS for soft viscoelastic solids & gels 
•  How to characterize the thixotropy & nonlinear response? 

•  Yielding Materials; viscoelastoplasticity 
•  Sponsors: 

  Schlumberger Foundation, Kraft Foods, Procter & Gamble 
  NSF Graduate Research Fellowship 
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The Pipkin Diagram	



Motivation for LAOS!
•  Develop rheological methods that leverage the capabilities of modern 

instrumentation to probe the nonlinear properties of complex fluids and soft solids? 
  Foods and consumer products (gels, foams, surfactant systems) 

gluten gel, micellar solutions, gastropod pedal mucus (snail slime) 

Increasing frequency, ω [rad/s],  Deborah number, λω 	
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•   “… the whole infinite-dimensional 
space of shearing strain is 
projected onto two dimensions”  

•  “Nothing very systematic is known 
about the interior region…” 

A.C. Pipkin, Lectures on Viscoelastic Theory, Springer, NewYork (1972) 

Bowditch-Lissajous Curve!

  

τ (t)
τ

0

γ (t) γ 0

τ (t;ω ,γ 0 )

•	


Wi = λ(γ 0ω )
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Linear Viscoelasticity & Ellipses!
•  The equation for a linear viscoelastic response can be re-written (by 

eliminating time t) to show that the Lissajous figure for stress is 
elliptical when represented vs. shear strain or shear-rate. 

τ = γ 0 ′G sinωt + ′′G cosωt[ ]γ (t) = γ 0 sinωt

τ 2 − 2 ′G τ γ + γ 2 ′G 2 + ′′G 2( ) = ′′G γ 0( )2

Viscous dominated! elastic dominated!Viscoelastic!
τ (t) τ (t) τ (t)

γ (t) γ (t) γ (t)

δ → 90˚ δ → 0˚90˚ > δ > 0˚

•  For further reading, see wikipedia or http://ibiblio.org/e-notes/Lis/Lissa.htm 

′G γ 0

G *γ 0′′G γ 0
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•  Impose oscillatory stress 
•  Measure   and represent yielding transition as Lissajous figures ( )tγ

τ (t) = τ0 sin(ωt)

4cm 2° steel cone, T=22°C 

0 yield
τ τ<

-11 rad.sω =

Strain 

S
tre

ss
 

…construct a rheological fingerprint of material nonlinearity!

The Lissajous figure 
for a linear viscoelastic 

response is always 
elliptical!
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Nathaniel Bowditch (1773-1838)!
•  “I have now traced the mathematical analysis and experimental 

illustration of the Lissajous curves from France to Gt. Britain…to 
their home in Salem, MA. The so-called Lissajous curves are the 
Bowditch curves…They will continue, probably to be called the 
Lissajous curves. But their history should be known and will be 
known; though it is not necessary for the reputation of the self-taught 
mathematician, Dr. Nathaniel Bowditch”… 

 J. Lovering, Hollis Prof. of Physics, Harvard College “Anticipation of the 
Lissajous Curves”,   
Proc. Am. Acad. Arts & Sci. 16 (1881).  

•  Originally published in N. Bowditch,  
Mem. Am. Acad. Arts. Sci 3, 413-436 (1815)!

Mt. Auburn Cemetery 
Cambridge, MA 

http://en.wikipedia.org/wiki/Nathaniel_Bowditch 
!In 1787, aged fourteen, Bowditch began to study 
algebra and two years later he taught himself 
calculus. He also taught himself Latin in 1790 and 
French in 1792 so he was able to read mathematical 
works such as Isaac Newton's Philosophiae Naturalis 
Principia Mathematica. At seventeen, he wrote a 
letter to a Harvard University professor pointing  
 out an error in the Principia….!

A.D. Crowell, Am. J. Phys 1981 
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Tools for Analyzing Nonlinear Oscillatory Flows!

•  Pipkin Space Pipkin, 1972 
•  Bowditch-Lissajous curves W. Philippoff,  Trans Soc. Rheol. 10, 1964 

Dealy & Wissbrun Melt Processing 1990; Giacomin & coworkers  
•  Fourier Transform Rheology Willhelm et al., Macromol. Mater Eng. 2002 
•  Geometrical Interpretation of Lissajous Curves  Cho, Ahn et al., JoR 2005 

  Stress Decomposition              Kim, Hyun, Cho, KARJ 2006 

•  Different measures of non-linearity  
  Classify LAOS with 4 signature responses Hyun, Ahn et al., JNNFM 2002 
  Measure geometric distortion of Lissajous curves Tee & Dealy Trans. Soc. Rheol. 1975 
  T.H.D. – Total Harmonic Distortion Debbaut & Burhin, JoR 2002 
  Differential modulus, Gardel et al., Science 2004 
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Time-Domain Representation!

•  Even if we only think about the third harmonic, representation becomes 
complicated, because relative phase of the waves is important:  

τ (t;ω ,γ 0 ) (G1
*γ 0 ) = sinωt + 0.1sin 3ωt +δ3( )

How do we relate!
phase angle to higher!

 harmonic information? !

Hyun et al. Prog. Polym Sci, 2010 !
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Fourier Transform Rheometry!
•  Single harmonic input!

•  Measure!

•  Quantitatively robust, but lacking in physical interpretation!
  
τ (t) = γ 0 ′Gn sin nωt + ′′Gn cos nωt⎡⎣ ⎤⎦

n=odd
∑

Snail Pedal Mucus 
2cm steel plate, T=22°C, 180µm gap!

0( ) sint tγ γ ω=

' , "
[Pa]
n nG G

0   [Pa]τ

Dissipation:!

   
G1 '' =

Ed

πγ 0
2 =

τdγ∫
πγ 0

2

Ganeriwala and Rotz, Polym. Eng. Sci., 1987;   Willhelm et al. Macromol. Mater Eng. 2002!

1

| * |
| * |

nG
G

1

| * |
| * |

nG
G
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•  General Fourier decomposition τ = γ 0 ′′Gn cos(nωt)
n  odd
∑ + ′Gn sin(nωt)

γ (t ) = γ 0 sinωt
= γ 0x(t )  

γ (t ) = (γ 0ω )cosωt
= γ 0y(t )

A New Approach 
•  Consider strain and strain rate as independent 

orthogonal inputs 
•  Decompose output stress using symmetry arguments  

into ‘elastic’ (x) and ‘viscous’ (y) contributions  
•  Represent the material response or Transfer Function 

 in terms of Chebyshev polynomials in x and y: 

Ti (y) ≡ Ti (cosωt ) = cos(iωt )Ti (x) ≡ Ti (sinωt ) = (−1)
i+1 sin(iωt )

BENEFITS 
•  Chebyshev polynomials are orthogonal and offer near-optimal 

polynomial interpolation 
•  The Chebyshev coefficients (vi & ei) have physical interpretations 

with respect to familiar rheological concepts such as shear-thinning 
and strain-stiffening 

•  Temporal response can always be reconstructed using identities for 
Chebyshev polynomials 

 
τ (t;ω ,γ 0 ) ≡ τelastic γ (t)( ) +τviscous γ (t)( ) = γ 0 eiTi (x)

i=1

N

∑ + γ 0ω viTi (y)
i=1

N

∑
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•  LAOS for nonlinear elastic solid 
  Strain-stiffening modulus: 

•  Higher order terms are mutually orthogonal… 

τ = G(γ )γ
G(γ ) = G1 +G3 γ γ *( )2

st
re

ss
!

strain!
γ *

•  Material Moduli: e1 = G1′ = G1 +
3
4

γ 0
γ *

⎛

⎝⎜
⎞

⎠⎟

2

G3 e3 = −G3 ' = + 1
4

γ 0
γ *

⎛

⎝⎜
⎞

⎠⎟

2

G3

Linear elastic limit ! Direct measure of the nonlinearity !

τ (t) = G1 +G3 γ (t) γ *( )2{ }γ 0 sinωt

St
re

ss
  τ

 [P
a]

   
 !

Chebyshev Decomposition!

γ 0
γ *

= 1.5

τelastic = γ 0 eiTi (x)
i=1

N

∑
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•  LAOS for shear-thinning viscous fluid 
  Rate-dependent viscosity:  τ = η( γ ) γ

 
τ (t) = η1 −η3 γ (t) γ *( )2{ }γ 0ω cosωt

 η( γ ) = η1 −η3 γ γ *( )2

st
re

ss
!

Shear rate! γ *

Chebyshev Decomposition!

 

γ 0
γ *

= 1.5

τviscous = γ 0ω viTi (y)
i=1

N

∑

•  Viscosity: v1 ≡ η1′ = η1 −
3
4

γ 0
γ *

⎛

⎝⎜
⎞

⎠⎟

2

η3 v3 ≡ η3 ' = − 1
4

γ 0
γ *

⎛

⎝⎜
⎞

⎠⎟

2

η3

Newtonian limit ! Direct measure of the nonlinearity !
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Ewoldt, Hosoi, McKinley, J. Rheol. 52(6), 2008!
Ewoldt, Winter, Maxey, McKinley, Rheol. Acta  2010!

Noise Floor!
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Strain-stiffening index, S 
  GM': small-strain (tangent) modulus 
  GL': large-strain (secant) modulus  ′GL

 ′GM

  

′GM = dτ
dγ γ =0

= e1 − 3e3 + 5e5 + ...= n ′Gnn=odd
∑

′GL = τ
γ γ =γ 0

= e1 + e3 + e5 + ...= ′Gn −1( ) n−1( )/2
n=odd
∑

τ

γ

τ

γ

τ

γ

 ′GL

 ′GM

 ′GL

 ′GM
  S=GL'/GM' = 1 for linear viscoelastic material 
  S < 1 for strain softening 
  S > 1 for strain stiffening 

  
S =

′GL

′GM

=
′Gn −1( ) n−1( )/2

n=odd
∑

n ′Gnn=odd
∑

=
e1 + e3 + e5...

e1 − 3e3 + 5e5...

Similar framework for nonlinear viscous response; 
 plot stress against strain-rate:  
              Thickening ratio	

 T = ′ηL

′ηM
=

v1 + v3 + v5...( )
v1 − 3v3 + 5v5...( )
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Example: Evaluating Measures of Nonlinear Moduli!

17	
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•  100 mM CPyCl/50 mM NaSal:  A useful example because the linear viscoelastic 
envelope is almost perfectly described by a Maxwell model 

Frequency ω [rad/s]!

St
ra

in
 A

m
pl

itu
de

   
γ 0

 [–
]!

0.1! 0.7! 3! 15!

0.3!

1.0!

3.0!

10!

Strain (x)!
γ = γ 0 sinω t

st
re

ss
!

Elastic stress!
′τ (x)

total stress!
′τ (x)+ ′′τ (y)
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•  The first harmonic component: the linear elastic modulus 

′G1(ω ) =
G(λω )2

1+ (λω )2

λω!

Contours of G1(ω, γ0)!
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•  The first harmonic viscous component: 

′′G1(ω ) =
G(λω )
1+ (λω )2

Contours of G1”(ω, γ0) !
G1′′ (ω ,γ 0 ) =ω v1

λω!
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•  Rotate by 90˚ (x  y) to view ‘viscous stress’ contribution 

Frequency ω [rad/s]!
0.7! 3! 15!

Shear rate (y)!
 γ = γ 0 cosω t

st
re

ss
!

Viscous stress!
′τ (x)

St
ra

in
 A

m
pl

itu
de

  γ
0 [

–]
!

0.1!

0.3!

1.0!

3.0!

10!
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•  Measure of viscoelastic nonlinearity: v3 
τv = γ 0 e1T1(x)+ e3T3(x)...{ }+ (γ 0ω ) v1T1(y)+ v3T3(y)...{ }

24	



Phase Plane Portrait !
•  The material response studied in this example can also be compactly 

represented as three-dimensional trajectories in space: 
   {x(t) = strain, y(t) = shear rate, z(t) = stress}  
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General Characteristics of Drilling Muds: 
•  Yield stress is important  

(removal of cuttings, suspension of densifying solids) 
•  Time dependent rheological properties 
•  Exposed to various timescales and  

magnitudes of deformation downhole 

Most common rheometric tests 
•  Steady flow: 

steady state nonlinear viscous properties 
•  Thixotropic loops: 

time-dependent viscous properties 
•  Linear viscoelasticity: 

A more-complete characterization? 
•  Large amplitude oscillatory shear (LAOS) systematically 

spans the timescale and magnitude of deformation 
•  Probes time-dependent nonlinear viscous and elastic 

properties 
•  Connects steady flow viscosity, linear viscoelastic moduli, 

and nonlinear viscoelastic properties  

Fluids with Yield Stresses/Critical Stresses 

( )η γ

up down( ), ( )η γ η γ 

( ), ( )G Gω ω′ ′′

How “yield-stressy” is a given fluid?! Oil-based Drilling Mud (Invert Emulsion)!
J. Maxey, Halliburton!

Ewoldt, Winter, Maxey, McKinley, Rheol. Acta. 49(2), 2010. !

26 

Carreau model fits  
shown by lines 

Characterization in Steady Shear 

   

η −η∞

η0 −η∞

= 1+ λ γ( )2⎡
⎣⎢

⎤
⎦⎥

n−1
2

ARES-LS displacement controlled rheometer (TA Instruments) 

Aqueous Xanthan gum solution (0.2wt%), steady flow data (cone, D=50mm, T=22º C)  

Invert emulsion drilling fluid, thixotropic loops test (parallel disks with sandpaper, D=25mm, T=49ºC) 
closed circles for disk correction 

•  Compare response of a shear-thinning (‘pseudoplastic material’) and a real 
elasto-viscoplastic material (drilling mud) 

Dynamic yield stress of 
drilling mud σy ~ 70 Pa 

What about the elastic 
properties?  



ASR Rheology Symposium 2012 	

 1/27/12	



(c) G.H.McKinley/MIT	

 14	



27 

LAOS Data Analysis 
MITlaos (Ewoldt & Winter, 2008) used for processing 
• From full raw data, select final 6 steady cycles (after initial thixotropic response) 
• Fourier transform (FT) spectrum is calculated, along with other measures including 

Chebyshev coefficients and nonlinear moduli 

Example: 
Drilling fluid 
ω=15 rad/s,  

γ0=3.16 
Thixotropic !
envelope!

1− exp(−t λstructure ){ }

28 

Perfect plastic dissipation ratio 

  Ed = σdγ∫

( ) ( )( )0 ma

2

x

0 1

1 Perfect Plastic
4 0.785 Newtonian

0 Purely Elast
2 2

icd pp

dE G
E γ σ

πγφ π
→⎧

′′ ⎪= = → =⎨
⎪ →⎩

Perfect plastic 
dissipation ratio 

* sin
4 | | 4
G
G

π πφ δ
′′

= = Linear viscoelastic response 

max 0( , , )n nf G Gσ γ ′ ′′= General nonlinear viscoelastic response 

The e nergy dissipated by a single LAOS response is represented by the area enclosed in a 
Lissajous curve of stress vs. strain.  For a given strain amplitude 

0γ

 and maximum stress

maxσ

, 
the maximum possible dissipat ed energy is the circumscribing rectangle of the perfect plastic 
model response, with strain amplitude 

0γ

 and yield stress

maxYσ σ=

.  The example shown here is 
the measured steady LAOS response of the drilling flu id at _ =15 rad.s -1, with

0 3.16γ =

, 

max 113Paσ =

,  and
0.829φ =

. 

Perfectly plastic response appears as a 
rectangular elastic response curve 

Compare dissipated energy (enclosed area) 
to that of a corresponding perfectly plastic 
response: 

Example: 
Drilling fluid 
ω=15 rad/s 
γ0=3.16 

Ewoldt et al., Rheol. Acta, 2010 

•  So how do I quantify ‘how square’ the Bowditch-Lissajous curve is? 

( ) sgn( ( ))Yt tσ σ γ= 

0nG′ = ( )
n-1
2

4 1 1     : oddY
n

o

G n
n

σ
π γ

′′ = −
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Shear-thinning Xanthan Gum 

( )

1 Perfect Plastic
4 0.785 Newtonian

0 Purely Elasticd pp

d

E
Eφ π

→⎧
⎪= → =⎨
⎪ →⎩

Ewoldt et al., Rheol. Acta, 2010 

Linear viscoelastic regime!

30 

Elastoviscoplastic drilling fluid 

( )

1 Perfect Plastic
4 0.785 Newtonian

0 Purely Elasticd pp

d

E
Eφ π

→⎧
⎪= → =⎨
⎪ →⎩

Ewoldt et al., Rheol. Acta, accepted  

Linear elastic!

Nonlinear !
elastoplastic!

plastic!

viscoplastic!

• Use perfect plastic dissipation ratio in conjunction with 
other tools (Lissajous figures, chebyshev coefficients..) 
to provide a complete finger print and identification of 
different material responses!
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•  LAOS is a great experimental methodology to probe differences between yielded/unyielded 
regime as well as limitations of constitutive models. 

* Møller et. al, Roy Soc A, 2009!
ω  [rad/s]

τ 0  [Pa]

0.2      0.5        1         2         5!

200!

100   !

50 !

20     !

10!

5    !

2    !

1  !

ω = 5 rad/s:!

Corresponding nonlinear compliance measures:!

 

The EHB model is fairly simple :

γ = γ e + γ p  ;  γ e =
τ
G

 

γ p =

0                if τ ≤ τ y
τ − τ y
k

⎛
⎝⎜

⎞
⎠⎟

1/n

if τ ≥ τ y

⎧

⎨
⎪

⎩
⎪

31	



Using LAOS to Improve Predicted Rheological Behavior!

τ 0  [Pa]
200!

100   !

50 !

20     !

10!

5    !

2    !

1  !

EHB Model - Carbopol!
τ y = 45 Pa  ;  k = 26 Pa.sn

n = 0.43  ;  G = 350 Pa

•  Use LAOS to improve constitutive models and then determine the relevant model 
parameters; e.g. a kinematic hardening (KH) model for elastoviscoplasticity 

ω  [rad/s]

τ 0  [Pa]

0.2      0.5        1         2         5!

200!

100   !

50 !

20     !

10!

5    !

2    !

1  !

C = 540 Pa   ;   k = 26 Pa.sn

q = 12  ;  n = 0.43  ;  G = 350 Pa

KH Model - Carbopol!

Elastoplastic below
 yield!

ω  [rad/s]
0.2      0.5        1         2         5!

ω  [rad/s]
0.2      0.5        1         2         5!

32	





ASR Rheology Symposium 2012 	

 1/27/12	



(c) G.H.McKinley/MIT	

 17	



33	



Summary of Rheological Fingerprinting!
•  A physical interpretation and language for LAOS experiments in complex fluids 
•  Framework of elastic/viscous stress decomposition plus Chebyshev coefficents 

•  Also applicable to thixotropic and ‘yield stress’ responses:  elasto-visco-plastic materials 
(Ewoldt, Winter, Maxey & McKinley; Rheol. Acta, 49(2), 2010) 

 

Tn (y) = cos(nωt)

y =
γ (t)
γ 0ω

Time !
Series!

 
τ (t;ω ,γ 0 ) ≡ τelastic γ (t)( ) +τviscous γ (t)( ) = γ 0 eiTi (x)

i=1

N

∑ + γ 0ω viTi (y)
i=1

N

∑

Bowditch-!
Lissajous!
Figures!

′GL′GM

Harmonic!
Coefficients!

Measures of Nonlinearity!

  

′GM = dτ
dγ γ =0

= e1 − 3e3 + 5e5 + ...

′GL =  τ
γ γ =γ 0

= e1 + e3 + e5 + ...

S = ′GL
′GM

T = ′ηL
′ηM

34 
MITlaos Matlab program available for use by anyone….contact mitlaos@mit.edu !


